13,387 research outputs found

    Analysis of Leptogenesis in Supersymmetric Triplet Seesaw Model

    Get PDF
    We analyze leptogenesis in a supersymmetric triplet seesaw scenario that explains the observed neutrino masses, adopting a phenomenological approach where the decay branching ratios of the triplets and the amount of CP--violation in its different decay channels are assumed as free parameters. We find that the solutions of the relevant Boltzmann equations lead to a rich phenomenology, in particular much more complex compared to the non--supersymmetric case, mainly due to the presence of an additional Higgs doublet. Several unexpected and counter--intuitive behaviors emerge from our analysis: the amount of CP violation in one of the decay channels can prove to be be irrelevant to the final lepton asymmetry, leading to successful leptogenesis even in scenarios with a vanishing CP violation in the leptonic sector; gauge annihilations can be the dominant effect in the determination of the evolution of the triplet density up to very high values of its mass, leading anyway to a sizeable final lepton asymmetry, which is also a growing function of the wash--out parameter K=Gamma_d/H, defined as usual as the ratio between the triplet decay amplitude Gamma_d and the Hubble constant H; on the other hand, cancellations in the Boltzmann equations may lead to a vanishing lepton asymmetry if in one of the decay channels both the branching ratio and the amount of CP violation are suppressed, but not vanishing. The present analysis suggests that in the supersymmetric triplet see-saw model successful leptogenesis can be attained in a wide range of scenarios, provided that an asymmetry in the decaying triplets can act as a lepton--number reservoir.Comment: 14 pages, 6 figure

    Leptogenesis origin of Dirac gaugino dark matter

    Full text link
    The Dirac nature of the gauginos (and also the Higgsinos) can be realized in RR-symmetric supersymmetry models. In this class of models, the Dirac bino (or wino) with a small mixture of the Dirac Higgsinos is a good dark matter candidate. When the seesaw mechanism with Higgs triplet superfields is implemented to account for the neutrino masses and mixing, the leptogenesis driven by the heavy triplet decay is shown to produce not only the matter-antimatter asymmetry but also the asymmetric relic density of the Dirac gaugino dark matter. The dark matter mass turns out to be controlled by the Yukawa couplings of the heavy Higgs triplets, and it can be naturally at the weak scale for a mild hierarchy of the Yukawa couplings.Comment: 9 pages. Restructured for clear presentation, corrected some errors and typos. No change in conclusio

    Dilaton Stabilization and Inflation in the D-brane World

    Full text link
    We study the dilaton stabilization in the D-brane world in which a D-brane constitutes our universe. The dilaton can be stabilized due to the interplay between the D-brane tension and the negative scalar curvature of extra dimensions. Cosmic evolution of the dilaton is investigated with the obtained dilaton potential and it is found that inflation can be realized before the settlement of the dilaton.Comment: 10 pages, abstract correcte

    U(2) and Maximal Mixing of nu_{mu}

    Full text link
    A U(2) flavor symmetry can successfully describe the charged fermion masses and mixings, and supress SUSY FCNC processes, making it a viable candidate for a theory of flavor. We show that a direct application of this U(2) flavor symmetry automatically predicts a mixing of 45 degrees for nu_mu to nu_s, where nu_s is a light, right-handed state. The introduction of an additional flavor symmetry acting on the right-handed neutrinos makes the model phenomenologically viable, explaining the solar neutrino deficit as well as the atmospheric neutrino anomaly, while giving a potential hot dark matter candidate and retaining the theory's predictivity in the quark sector.Comment: 20 pages, 1 figur
    • …
    corecore